Can experiment determine the stacking fault energy of metastable alloys

2020 
Abstract Stacking fault energy (SFE) plays an important role in deformation mechanisms and mechanical properties of face-centered cubic (fcc) metals and alloys. In many concentrated fcc alloys, the SFEs determined from density functional theory (DFT) calculations and experimental methods are found having opposite signs. Here, we show that the negative SFE by DFT reflects the thermodynamic instability of the fcc phase relative to the hexagonal close-packed one; while the experimentally determined SFEs are restricted to be positive by the models behind the indirect measurements. We argue that the common models underlying the experimental measurements of SFE fail in metastable alloys. In various concentrated solid solutions, we demonstrate that the SFEs obtained by DFT calculations correlate well with the primary deformation mechanisms observed experimentally, showing a better resolution than the experimentally measured SFEs. Furthermore, we believe that the negative SFE is important for understanding the abnormal behaviors of partial dislocations in metastable alloys under deformation. The present work advances the fundamental understanding of SFE and its relation to plastic deformations, and sheds light on future alloy design by physical metallurgy.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    126
    References
    13
    Citations
    NaN
    KQI
    []