Workload Migration across Distributed Data Centers under Electrical Load Shedding

2021 
Data centers are essential components in the current digital world. The number and scales of data centers have both increased a lot in recent years. The distributed data centers are standing out as a promising solution due to the development of modern applications which need a massive amount of computation resource and strict response requirement. However, compared to centralized data centers, distributed data centers are more fragile when the power supply is unstable. Power constraints or outages because of electrical load shedding or other reasons will significantly affect the service performance of data centers and damage the quality of service (QoS) for customers. Moreover, unlike conventional data centers, distributed data centers are often unattended, so we need a system that can automatically calculate the best workload schedule to maximize profit in such situations. In this paper, we closely investigate the influence of electrical load shedding in distributed data centers and construct a physical model to estimate the relationship among power, heat and workload. We then use queueing theory to approximate the tasks’ response time and aim to minimize the overall response time of tasks by migration. Our extensive evaluations show that our method can improve the response time with more than 9% reduction.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    7
    References
    0
    Citations
    NaN
    KQI
    []