Generic replica symmetric field-theory for short range Ising spin glasses

2002 
Symmetry considerations and a direct, Hubbard-Stratonovich type, derivation are used to construct a replica field-theory relevant to the study of the spin glass transition of short range models in a magnetic field. A mean-field treatment reveals that two different types of transitions exist, whenever the replica number n is kept larger than zero. The Sherrington-Kirkpatrick critical point in zero magnetic field between the paramagnet and replica magnet (a replica symmetric phase with a nonzero spin glass order parameter) separates from the de Almeida-Thouless line, along which replica symmetry breaking occurs. We argue that for studying the de Almeida-Thouless transition around the upper critical dimension d = 6, it is necessary to use the generic cubic model with all the three bare masses and eight cubic couplings. The critical role n may play is also emphasized. To make perturbative calculations feasible, a new representation of the cubic interaction is introduced. To illustrate the method, we compute the masses in one-loop order. Some technical details and a list of vertex rules are presented to help future renormalisation-group calculations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    25
    Citations
    NaN
    KQI
    []