Early corticospinal tract damage in prodromal SCA2 revealed by EEG-EMG and EMG-EMG coherence
2017
Abstract Objective Clinical data suggest early involvement of the corticospinal tract (CST) in spinocerebellar ataxia type 2 (SCA2). Here we tested if early CST degeneration can be detected in prodromal SCA2 mutation carriers by electrophysiological markers of CST integrity. Methods CST integrity was tested in 15 prodromal SCA2 mutation carriers, 19 SCA2 patients and 25 age-matched healthy controls, using corticomuscular (EEG-EMG) and intermuscular (EMG-EMG) coherence measures in upper and lower limb muscles. Results Significant reductions of EEG-EMG and EMG-EMG coherences were observed in the SCA2 patients, and to a similar extent in the prodromal SCA2 mutation carriers. In prodromal SCA2, EEG-EMG and EMG-EMG coherences correlated with the predicted time to ataxia onset. Conclusions Findings indicate early CST neurodegeneration in SCA2. EEG-EMG and EMG-EMG coherence may serve as biomarkers of early CST neurodegeneration in prodromal SCA2 mutation carriers. Significance Findings are important for developing preclinical disease markers in the context of currently emerging disease-modifying therapies of neurodegenerative disorders.
Keywords:
- Correction
- Source
- Cite
- Save
- Machine Reading By IdeaReader
48
References
17
Citations
NaN
KQI