A novel spectral index for estimating fractional cover of non-photosynthetic vegetation using near-infrared bands of Sentinel satellite

2021 
Abstract Non-photosynthetic vegetation (NPV) is an essential component in various vegetation-soil ecosystems. Both phenology and disturbance lead to a transition from photosynthetic vegetation to NPV and vice versa. Due to the similar spectral reflectance of NPV and bare soil (BS) in the visible-near infrared region (400–1000 nm), NPV and BS separation is relying on the shortwave infrared (SWIR) bands in most cases. The lignin and cellulose absorption feature is around 2100 nm, which is the most distinctive feature of NPV. However, the water absorption feature is much stronger in the SWIR, increasing the difficulty for NPV-BS separation when wet. Recently, Sentinel-2/3 satellites add more bands in the near infrared (NIR), which provide an extra opportunity for index building and application. Based on the difference captured by derivative spectra, a spectral index, NPV-Soil Separation Index (NSSI), is proposed to realize the separation using two NIR bands within 750–900 nm range in this study. Using spectra of photosynthetic vegetation (PV), NPV, and BS acquired from world-recognized spectral libraries, NSSI is built and validated as effective for lab-collected data. With the triangle method, one of the linear spectral unmixing methods, the fractional cover of PV, NPV, and BS can be estimated. Over a woodland study area, the fractional cover retrieved by cellulose absorption index (CAI) and NDVI combination of ZY1-02D AHSI hyperspectral image is 26.41%, 37.56%, 36.03% for PV, NPV, and BS in order. With the proposed NSSI-NDVI combination, the corresponding estimated fractional cover is 23.31%, 38.44%, 38.25% using Sentinel-2 MSI and 24.58%, 36.74%, and 38.68% using Sentinel-3 OLCI image. The comparable validation result confirms that the proposed NSSI is effective for NPV-BS separation. Moreover, the triangle method of NSSI-NDVI combination is applied on both grassland and cropland images to examine its feasibility on varied types of typical vegetation-soil ecosystems, and the well-built triangular space supports its feasibility. Relying on NIR bands, NSSI can avoid strong water absorption in the SWIR. Also, the feasibility of NSSI being used on multiple multispectral satellite sensors, especially the Sentinel series, makes continuous mapping for NPV over a large spatial scale possible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    3
    Citations
    NaN
    KQI
    []