Vertical structures of temperature inversions and clouds derived from high-resolution radiosonde measurements at Ny-Ålesund, Svalbard

2021 
Abstract The knowledge of the vertical atmospheric structures in the Arctic Region remains elusive, due largely to sparse long-term continuous profiling observations. Based on the temporally high-resolution (1 s) radiosonde measurements from April 2017 to September 2019 collected at the Ny-Alesund (11.92°E, 78.92°N) station in the Arctic, we analyzed the characteristics of temperature inversion (TI) and clouds, including the diurnal and seasonal variabilities under different atmospheric circulations. Clouds mainly appear in the lower troposphere, with the largest contribution by double-layer clouds. The seasonal variation of vertical cloud distribution above 7 km seems is closely linked to the seasonal variability of tropopause height. Besides, the diurnal variation of TI frequency exhibits significant seasonality, with a bimodal distribution in the vertical, with stronger TI intensity in summer. The lowest temperatures at the top of bottom of the elevated inversion are observed in winter, whereas the lowest temperature of the surface-based inversion top is observed in spring, which may be related to the seasonal variation of sea surface temperature. The characteristics of cloud and TI are further analyzed under the five typical circulation patterns. It is found that the low-pressure system and southerly wind in front of the trough are favorable for cloud formation in the lower troposphere, while the impact of synoptic pattern on clouds in the upper troposphere seems negligible, likely due to the cold environment. The TI associated with cyclone systems tends to be much thinner and weaker, owning to the conditionally unstable conditions. These findings provide key reference for the vertical structure of the inversion and cloud in the Arctic, which is expected to help improve cloud parameterization in numeric model.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    89
    References
    1
    Citations
    NaN
    KQI
    []