A Mononuclear CoII Coordination Complex Locked in a Confined Space and Acting as an Electrochemical Water‐Oxidation Catalyst: A “Ship‐in‐a‐Bottle” Approach

2016 
Preparing efficient and robust water oxidation catalyst (WOC) with inexpensive materials remains a crucial challenge in artificial photosynthesis and for renewable energy. Existing heterogeneous WOCs are mostly metal oxides/hydroxides immobilized on solid supports. Herein we report a newly synthesized and structurally characterized metal–organic hybrid compound [{Co3(μ3-OH)(BTB)2(dpe)2} {Co(H2O)4(DMF)2}0.5]n⋅n H2O (Co-WOC-1) as an effective and stable water-oxidation electrocatalyst in an alkaline medium. In the crystal structure of Co-WOC-1, a mononuclear CoII complex {Co(H2O)4(DMF)2}2+ is encapsulated in the void space of a 3D framework structure and this translationally rigid complex cation is responsible for a remarkable electrocatalytic WO activity, with a catalytic turnover frequency (TOF) of 0.05 s−1 at an overpotential of 390 mV (vs. NHE) in 0.1 m KOH along with prolonged stability. This host–guest system can be described as a “ship-in-a-bottle”, and is a new class of heterogeneous WOC.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    87
    Citations
    NaN
    KQI
    []