Microstructure characterization of W-Cu alloy sheets produced by high temperature and high pressure deformation technique

2017 
Abstract W-Cu alloy sheets were fabricated in this study by multiple high temperature and high pressure (multi-HTHP) deformation technique. Crystalline structures and phase composition of W-Cu alloy sheets were investigated by transmission electron microscopy and X-ray diffraction, respectively. Results showed that W-Cu alloys possessed only W and Cu phases without other intermediate phases or solid solution of W and Cu. But shape, size and distribution of the two phases were changed after multi-HTHP deformation. Phase composition was also found without any changes after the multi-HTHP deformation treatments. Additionally, W-Cu alloy sheets with a relative density of 99.97% can be successfully obtained by multi-HTHP techniques. Cu phases are closely surrounded by W particles to form a net-work structure and W particles were also refined during the process of multi-HTHP, as a result, W-Cu alloy sheets with a higher properties in electrical conductivity (Ec) and micro-hardness reach 46.8% IACS and 450 HV, respectively, was obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    19
    Citations
    NaN
    KQI
    []