Axionlike Particles from Hypernovae.

2021 
It was recently pointed out that very energetic subclasses of supernovae (SNe), like hypernovae and superluminous SNe, might host ultrastrong magnetic fields in their core. Such fields may catalyze the production of feebly interacting particles, changing the predicted emission rates. Here we consider the case of axionlike particles (ALPs) and show that the predicted large scale magnetic fields in the core contribute significantly to the ALP production, via a coherent conversion of thermal photons. Using recent state-of-the-art supernova (SN) simulations, including magnetohydrodynamics, we find that, if ALPs have masses m_{a}∼O(10)  MeV, their emissivity in such rare but exciting conditions via magnetic conversions would be over 2 orders of magnitude larger than previously estimated. Moreover, the radiative decay of these massive ALPs would lead to a peculiar delay in the arrival times of the daughter photons. Therefore, high-statistics gamma-ray satellites can potentially discover MeV ALPs in an unprobed region of the parameter space and shed light on the magnetohydrodynamical nature of the SN explosion.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    64
    References
    0
    Citations
    NaN
    KQI
    []