Toward precision radial velocity measurements using Echelle spectrograph at Vainu Bappu Telescope

2019 
The Echelle spectrograph operating at Vainu Bappu Telescope (VBT) is a general purpose instrument designed for high resolution spectroscopy. It is being considered for precision Doppler measurements without altering the existing design and basic usage. However, the design level limitations and environmental perturbations are a major source of instability and systematic errors. As a result, a small Doppler signal in the stellar spectra is completely swamped by the large and uncontrolled instrumental drift. In this paper, we discuss some of the remedial measures we took to improve the radial velocity performance of the spectrograph. We show that a new auto-guider assembly has greatly reduced the mechanical jitter of the star image at the fibre input, making the illumination of the spectrograph slit at the other end stable. We have also installed an iodine absorption cell to track and eliminate the instrumental drifts to facilitate precision radial velocity observations. Furthermore, we have developed a generic algorithm that uses iodine exposures to extract the stellar radial velocities without the need for the complex forward modeling. Our algorithm is not accurate to the level of traditional iodine technique. However it is convenient to use on a low-cost general-purpose spectrograph targeting a moderate Radial Velocity (RV) precision at a few 10-100~$\textrm{ms}^{-1}$ level. Finally, we have demonstrated the usefulness of our approach by measuring the RV signal of a well known short-period, planet-hosting star.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []