Soil nitrogen and climate drive the positive effect of biological soil crusts on soil organic carbon sequestration in drylands: A Meta-analysis.

2022 
Abstract Biological soil crusts (BSCs), known as ecological engineers, play an important role in soil organic carbon (SOC) sequestration in dryland ecosystems. Although numerous individual studies had been conducted, the global patterns of the changes in SOC concentration following BSCs establishment remain unclear. In this study, we performed a comprehensive meta-analysis of 184 independent observations at 47 sites to quantify the responses of SOC and other soil variables to BSCs establishment and identify the underlying mechanisms. Our results showed that BSCs generally increased SOC by 70.9% compared to the controls (uncrusted soil), and the positive effects of BSCs on SOC in deserts (120.3%) were stronger than those in grasslands (32.7%). Mosses and lichens had a stronger positive effect on SOC than algae crusts (67.5%, 82.8%, and 58.2% respectively). Mixed crusts accumulated more SOC (181.6%) than single (moss, lichen and algae) crusts. The presence of BSCs considerably increased total nitrogen (TN) (+80.7%), total phosphorus (TP) (+20.3%), available N (+62.7%), and available P (+14.3%). Significant relationships were observed among the effect size of SOC and climate and soil N and P in both desert and grassland. The random forest analysis showed that TN could be considered as a determinant of the concentration of SOC, followed by climate (P
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    61
    References
    0
    Citations
    NaN
    KQI
    []