Mycobacterium smegmatis RqlH defines a novel clade of bacterial RecQ-like DNA helicases with ATP-dependent 3′–5′ translocase and duplex unwinding activities

2012 
The Escherichia coli RecQ DNA helicase participates in a pathway of DNA repair that operates in parallel to the recombination pathway driven by the multisubunit helicasenuclease machine RecBCD. The model mycobacterium Mycobacterium smegmatis executes homologous recombination in the absence of its helicasenuclease machine AdnAB, though it lacks a homolog of E. coli RecQ. Here, we identify and characterize M. smegmatis RqlH, a RecQ-like helicase with a distinctive domain structure. The 691-amino acid RqlH polypeptide consists of a RecQ-like ATPase domain (amino acids 1–346) and tetracysteine zinc-binding domain (amino acids 435–499), separated by an RqlH-specific linker. RqlH lacks the C-terminal HRDC domain found in E. coli RecQ. Rather, the RqlH C-domain resembles bacterial ComF proteins and includes a phosphoribosyltransferase-like module. We show that RqlH is a DNA-dependent ATPase/dATPase that translocates 3′–5′ on single-stranded DNA and has 3′–5′ helicase activity. These functions inhere to RqlH-(1–505), a monomeric motor unit comprising the ATPase, linker and zinc-binding domains. RqlH homologs are distributed widely among bacterial taxa. The mycobacteria that encode RqlH lack a classical RecQ, though many other Actinobacteria have both RqlH and RecQ. Whereas E. coli K12 encodes RecQ but lacks a homolog of RqlH, other strains of E. coli have both RqlH and RecQ.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    9
    Citations
    NaN
    KQI
    []