Influence of different materials for artificial auditory ossicle on the dynamic characteristics of human ear and research on hearing recovery

2017 
This paper used PATRAN/NASTRAN software to establish a three-dimensional finite element model of human ear and conduct dynamic simulation of hearing system. The correctness of the finite element model was verified through analyzing the tympanic membrane displacement of normal human ear under the sound pressure of 80 dB and comparing with the experimental data. Based on the verified model, this paper qualitatively and quantitatively studied and compared the influence of artificial auditory ossicle with 7 kinds of common materials (titanium, stainless steel, teflon, porous polyethylene, alumina ceramic, EH composites and hydroxylapatite ceramics) on the sound conduction of human ear and the effect of postoperative hearing recovery under different sound pressures (50 dB, 80 dB, 105 dB and 120 dB) at 100-10000 Hz. Results showed that the hearing recovery of human ear had the same effect after replacing artificial auditory ossicle under different sound pressures with different frequency. At different frequencies with the same sound pressure, the postoperative hearing of human ear had different effects after replacing different materials of artificial auditory ossicle. Artificial auditory ossicle of hydroxylapatite ceramics, stainless steel and alumina ceramic had better effect on sound conduction at low frequencies, while artificial auditory ossicle of porous polyethylene and teflon had better effect on sound conduction at high frequencies. Under different sound pressures, replacing artificial auditory ossicle with 7 kinds of common materials showed little difference in the hearing recovery of human ear at each frequency band and had a stable influence on the sound conduction of human ear.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    19
    References
    1
    Citations
    NaN
    KQI
    []