Templated and Catalytic Fabrication of N-Doped Hierarchical Porous Carbon–Carbon Nanotube Hybrids as Host for Lithium–Sulfur Batteries

2017 
Nitrogen-doped hierarchical porous carbon and carbon nanotube hybrids (N-HPC–CNTs) are fabricated by simple pyrolysis of the N-rich raw material melamine-formaldehyde (MF) resin in the presence of nano-CaCO3 and a bimetallic combination of Fe–Co catalyst. During carbonization, nano-CaCO3 acts as a template for creating a hierarchical porous carbon, and the N atoms originated from MF resin are in situ doped into the carbon matrix simultaneously. Meanwhile, volatile gases generated by the thermal decomposition of MF resin could serve as carbon and nitrogen sources to grow nitrogen-doped CNTs on HPC. The growth mechanism is the same as that for conventional chemical vapor deposition (CVD) growth of CNTs on the metal catalysts, but the technological requirements are obviously not as harsh as those for the CVD method. Low-cost raw materials and simple equipment are sufficient for the growth. Moreover, the density and length of the CNTs are tunable, which can be simply adjusted via applying different amounts of...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    50
    Citations
    NaN
    KQI
    []