Structural sensitivity of heterogeneous catalysts for sustainable chemical synthesis of gluconic acid from glucose

2020 
Abstract Gluconic acid and its derivatives have been widely used in the food and pharmaceutical industries. Conventional processes that involve the conversion of glucose into gluconic acid via fermentation present several technological shortcomings as they involve energy-intensive wastewater treatment and complex enzyme separation. Greener oxidation processes over heterogeneous metal catalysts have attracted increasing attention worldwide. Au-, Pt- and Pd-based heterogeneous catalysts have been extensively used for the chemical oxidation of glucose to gluconic acid. Bimetallic catalysts synthesized by adding either noble or inexpensive metals have also presented excellent performance for the oxidations of glucose. In particular, particle size, which has been recognized as the most important factor that affect catalytic performances, could be rationally tuned by changing the types of support and ligand as well as the synthesis conditions. In this perspective review, we summarize and critically discuss the recent advances in the structural design of mono- and bimetallic catalysts for the oxidation of glucose in aqueous media. Furthermore, the challenges of developing catalysts for the green synthesis of gluconic acid have been highlighted. This review provides alternative insights for designing effective catalytic materials for the catalytic oxidation of bio-derived oxygenates over heterogeneous catalysts.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    78
    References
    7
    Citations
    NaN
    KQI
    []