Pin Fin Heat Sink Optimization for Natural-Convection Cooling

2019 
This paper demonstrates that the performance of natural-convection pin fin heat sinks can be improved up to 16% by actually removing pin fins from a conventional pin fin heat sink. Both numerical and experimental studies are performed on a commercially available pin fin heat sink suspended in mid-air and correlated well. Both natural convection and radiative heat transfer contributions are analysed. The individual contribution of each pin fin is studied, showing that 94% of heat transfer can be attributed to the heat sink baseplate and two outer rings of pin fins. A two-step optimization strategy was devised and applied leading to an optimal design with a thermal resistance of 3.35 K/W, compared to the original 4.0 K/W, for a 10 W heat load. Altogether, the advantages of computational modelling in combination with experimental testing are exploited leading to better, lighter and more cost effective thermal management solutions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    14
    References
    1
    Citations
    NaN
    KQI
    []