Three-dimensional pulsed continuous arterial spin labeling and intravoxel incoherent motion imaging of nasopharyngeal carcinoma: correlations with Ki-67 proliferation status

2021 
Background Recurrence and distant metastasis are still the main problems affecting the long-term prognosis of nasopharyngeal carcinoma (NPC) patients, and may be related to the Ki-67 proliferation status. We therefore explored the potential correlation between Ki-67 proliferation status in NPC with the parameters derived from two imaging techniques: three-dimensional pulsed continuous arterial spin labeling (3D pCASL) and intravoxel incoherent motion (IVIM). Methods Thirty-six patients with pathologically confirmed NPC were included, and the Ki-67 labeling index (LI) was measured by immunohistochemistry. All patients underwent plain and contrast-enhanced magnetic resonance imaging (MRI), IVIM, and 3D pCASL examination. The mean, maximum, and minimum of blood flow (BF), minimum of apparent diffusion coefficient (ADC), pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) parameters were all measured, and Spearman's correlation analysis was performed to evaluate the relationships between these parameters and the Ki-67 LI. According to the Ki-67 values, the patients were divided into two groups: high (>50%) and low (≤50%). The rank-sum test (Mann-Whitney U test) was then used to compare the differences in quantitative parameters between the high and low Ki-67 groups. Results Ki-67 LI was positively correlated with BFmean and BFmax (r=0.415 and 0.425). D*mean and D*min did have positive correlation with Ki-67, but this was not significant (P=0.082 and 0.072). BFmax was significantly different between the high and low Ki-67 groups (P=0.028). Conclusions 3D pCASL and IVIM are noninvasive functional MR perfusion imaging techniques that can evaluate perfusion information and perfusion parameters. Our study suggests that 3D pCASL is more effective than IVIM for assessing the proliferation status of NPC, which is beneficial for evaluating the prognosis of patients. Furthermore, BFmax is the best biomarker for distinguishing high from low Ki-67 levels.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    26
    References
    0
    Citations
    NaN
    KQI
    []