ALMA detection of the rotating molecular disk wind from the young star HD 163296

2013 
Disk winds have been postulated as a mechanism for angular momentum release in protostellar systems for decades. HD 163296 is a Herbig Ae star surrounded by a disk and has been shown to host a series of HH knots (HH 409) with bow shocks associated with the farthest knots. Here we present ALMA science verification data of CO J = 2-1 and J = 3-2 emission, which are spatially coincident with the blue shifted jet of HH knots, and offset from the disk by -18.6 km s$^{-1}$. The emission has a double corkscrew morphology and extends more than 10'' from the disk with embedded emission clumps coincident with jet knots. We interpret this double corkscrew as emission from material in a molecular disk wind, and that the compact emission near the jet knots is being heated by the jet that is moving at much higher velocities. We show that the J = 3-2 emission is likely heavily filtered by the interferometer, but the J = 2-1 emission suffers less due to the larger beam and sensitivity to larger scale structures. Excitation analysis suggests temperatures exceeding 900 K in these compact features, with the wind mass, momentum and energy being of order 10$^{-5}$ M$_{⊙}$, 10$^{-4}$ M$_{⊙}$ km s$^{-1}$ and 10$^{40}$ erg, respectively. The high mass loss rate suggests that this star is dispersing the disk faster than it is funneling mass onto the star.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    68
    Citations
    NaN
    KQI
    []