Photosynthetic regulation under fluctuating light at chilling temperature in evergreen and deciduous tree species.

2021 
Abstract Plants usually experience fluctuating light conditions at chilling temperatures during the autumn season. We hypothesized that photosystem I (PSI) and PSII are more susceptible to photoinhibition under fluctuating light at chilling temperatures in deciduous species relative to evergreen species. We measured the photosynthetic performances under fluctuating light at 6 °C in two evergreen and two deciduous broadleaf tree species. Within the first 10 s after light increased at 6 °C, none of these species could generate an enough trans-thylakoid proton gradient. Meanwhile, PSI was highly oxidised in evergreen species but was highly reduced in deciduous species. This transient over-reduction of PSI in deciduous species was mainly caused by the higher electron flow from PSII. Furthermore, the deciduous species showed a significantly smaller violaxanthin pool and lower non-photochemical quenching under high light conditions at 6 °C, leading to more excess light energy could not be dissipated in PSII. Hence, we propose that fluctuating light combined with chilling temperature cause the over-reduction of photosynthetic electron chain in deciduous species.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    76
    References
    2
    Citations
    NaN
    KQI
    []