Failure criteria of unidirectional carbon fiber reinforced polymer composites informed by a computational micromechanics model

2019 
Abstract Failure prediction for carbon fiber reinforced polymer (CFRP) composites has been a longstanding challenge. In this study, we address this challenge by first applying a well-established computational micromechanics model based on representative volume element to predict the failure envelopes of unidirectional (UD) CFRP composites. Then, these failure envelopes are compared with the classical failure criteria. We have evaluated the performances of these failure criteria and identified the aspects for further improvement in their accuracies for the UD CFRP composites studied herein. Based on the failure mechanisms from computational analyses and the comparisons between predicted failure envelopes and classical failure criteria, a new set of homogenized failure criteria is proposed. The newly proposed failure criteria show significant improvement according to our computational and experimental results. Furthermore, we have compared the proposed failure criteria with existing experimental data and computational results available in the literature for different types of composites. Good agreements are generally observed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    34
    Citations
    NaN
    KQI
    []