A discrete-time single-server Poisson queueing game: Equilibria simulated by an agent-based model.

2019 
This paper considers a discrete-time single-server queue with a single acceptance period for a Poissonian population of homogeneous customers. Customers are served on a first-come first-served (FCFS) basis, and their service times are independent and identically distributed with a general distribution. We assume that each customer chooses her/his arrival-time slot with the goal of minimizing her/his expected waiting time in competition with other customers. For this queueing game, we derive a symmetric (mixed-strategy) Nash equilibrium; that is, an equilibrium arrival-time distribution of homogeneous customers, where their expected waiting times are identical. We also propose an agent-based model, which simulates the dynamics of customers who try to minimize their waiting times for service. Through numerical experiments, we confirm that this agent-based model achieves, in steady state, an arrival-time distribution similar to the equilibrium arrival-time distribution analytically obtained.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    1
    Citations
    NaN
    KQI
    []