Ferritin-based targeted delivery of arsenic to diverse leukaemia types confers strong anti-leukaemia therapeutic effects

2021 
Trivalent arsenic (AsIII) is an effective agent for treating patients with acute promyelocytic leukaemia, but its ionic nature leads to several major limitations like low effective concentrations in leukaemia cells and substantial off-target cytotoxicity, which limits its general application to other types of leukaemia. Here, building from our clinical discovery that cancerous cells from patients with different leukaemia forms featured stable and strong expression of CD71, we designed a ferritin-based As nanomedicine, As@Fn, that bound to leukaemia cells with very high affinity, and efficiently delivered cytotoxic AsIII into a large diversity of leukaemia cell lines and patient cells. Moreover, As@Fn exerted strong anti-leukaemia effects in diverse cell-line-derived xenograft models, as well as in a patient-derived xenograft model, in which it consistently outperformed the gold standard, showing its potential as a precision treatment for a variety of leukaemias. Trivalent arsenic (AsIII) is a clinically approved treatment agent for patients with promyelocytic leukaemia, but cannot be used for other types of leukaemia due to its toxicity. Here the authors show that different patient-derived leukaemia cells express CD71 and design a ferritin-based nanoparticle for specific delivery of AsIII to these cells, demonstrating substantially improved efficacy towards different leukaemia types in animal models, with reduced side effects.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    0
    Citations
    NaN
    KQI
    []