Enhancing the Sensitivity of Lateral Flow Immunoassay by Magnetic Enrichment Using Multifunctional Nanocomposite Probes.

2021 
For lateral flow immunoassay (LFIA), it is an important challenge to enhance the detection sensitivity to the same level as polymerase chain reaction or enzyme-linked immunosorbent assay to make LFIA pervasive in the field of on-site environmental analysis. We recently demonstrated that the LFIA sensitivity is dramatically enhanced by using Pt-nanoparticle-latex nanocomposite beads (Pt-P2VPs) as probes for the detection of the influenza A (H1N1) antigen compared with using conventional Au colloids as probes. Here, to further enhance the LFIA sensitivity using Pt-P2VPs, superparamagnetic iron oxide nanoparticles (SPIONs) were chemically conjugated to Pt-P2VPs (Pt-P2VP@SPION) to give them magnetic separation capability (enrichment and/or purification). To investigate the effect of magnetic enrichment on the LFIA sensitivity in a sandwich format, the C-reactive protein (CRP) was chosen as a model analyte and anti-CRP antibody (CRPAb)-conjugated Pt-P2VP@SPION (Pt-P2VP@SPION-CRPAb) beads were used as probes. The visual limit of detection (LOD) of LFIA was successfully lowered by increasing the magnetic enrichment factor φ. The minimum LOD under the present experimental conditions was 0.08 ng/mL for φ = 40, which is 26-fold lower than that of the standard Au-nanoparticle-based LFIA. In theory, the LOD can be unlimitedly decreased by just increasing φ. However, the times required for both the antigen-antibody binding reaction and magnetic separation dramatically increase with φ. We also propose solutions to overcome this drawback.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    56
    References
    0
    Citations
    NaN
    KQI
    []