Gravitational collapse of charged scalar fields

2014 
In order to study the gravitational collapse of charged matter we analyze the simple model of an self-gravitating massless scalar field coupled to the electromagnetic field in spherical symmetry. The evolution equations for the Maxwell–Klein–Gordon sector are derived in the \(3+1\) formalism, and coupled to gravity by means of the stress–energy tensor of these fields. To solve consistently the full system we employ a generalized Baumgarte–Shapiro–Shibata–Nakamura formulation of General Relativity that is adapted to spherical symmetry. We consider two sets of initial data that represent a time symmetric spherical thick shell of charged scalar field, and differ by the fact that one set has zero global electrical charge while the other has non-zero global charge. For compact enough initial shells we find that the configuration doesn’t disperse and approaches a final state corresponding to a sub-extremal Reissner–Nordstrom black hole with \(|Q|censorship conjecture for the case of charged matter.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    7
    Citations
    NaN
    KQI
    []