SPECT Reconstruction and Analysis for the Inspection of Spent Nuclear Fuel

2017 
A gamma-emission-tomography (GET) system for the inspection of spent nuclear fuel (SNF) has been developed and tested on multiple fuel types. This tool can be used for verification of the integrity of an assembly and consistency with the declarations of fissile-material content. Parallel-beam line integrals are measured by a discrete array of CdZnTe detectors that view the fuel through a 1.5mm wide by 100mm thick tungsten collimator. Detectors and electronics are on a rotating platform within a watertight stainless steel torus. During operation, the system is underwater and fuel is lowered through the center of the torus and held stationary as data are collected. Tomographic data collection requires a time on the order of minutes. In field experiments, data with count rates in the range of 50kcps to >500kcps per pixel have been recorded. In the reconstructed images, missing or replaced pins in all assembly types can be visually discriminated in the lattice of fuel pins. Automated detection of missing/replaced pins is the metric used for determination of optimal processing steps. Effectiveness of reconstruction and data-processing tools is measured by a tools ability to improve performance on the pindiscrimination task. This paper describes the data preprocessing, image reconstruction, image analysis, and performance evaluation of this system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    2
    References
    2
    Citations
    NaN
    KQI
    []