Conceptual design for the superconducting magnet system of a pulsed DEMO reactor

2013 
Abstract A methodology has been developed to consistently investigate, taking into account main reactor components, possible magnet solutions for a pulsed fusion reactor aiming at a large solenoid flux swing duration within the 2–3 h range. In a conceptual approach, investigations are carried out in the equatorial plane, taking into account the radial extension of the blanket-shielding zone, of the toroidal field magnet system inner leg and of the central solenoid for estimation of the pulsed swing. Design criteria are presented for the radial extension of the superconducting magnets, which is mostly driven by the structures (casings and conductor jacket). Typical available cable current densities are presented as a function of the magnetic field and of the temperature margin. The magnet design criteria have been integrated into SYCOMORE, a code for reactor modeling presently in development at CEA/IRFM in Cadarache, using the tools of the EFDA Integrated Tokamak Modeling task force. Possible solutions are investigated for a 2 GW fusion power reactor with different aspect ratios. The final adjustment of the DEMO pulsed reactor parameters will have to be consistently done, considering all reactor components, when the final goals of the machine will be completely clarified.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    10
    Citations
    NaN
    KQI
    []