Z2 Photonic topological insulators in the visible wavelength range for robust nanoscale photonics

2020 
Topological photonics provides an ideal platform for demonstrating novel band topology concepts, which are also promising for robust waveguiding, communication and computation applications. However, many challenges such as extremely large device footprint and functionality at short wavelengths remain to be solved which are required to make practical and useful devices that can also couple to electronic excitations in many important organic and inorganic semiconductors. In this letter, we report an experimental realization of Z2 photonic topological insulators with their topological edge state energies spanning across the visible wavelength range including in the sub-500 nm regime, which requires highly optimized nanofabrication. The photonic structures are based on deformed hexagonal lattices with preserved six-fold rotational symmetry patterned on suspended SiNx membranes. The experimentally measured energy-momentum dispersion of the topological lattices directly show topological band inversion by the sw...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    53
    References
    21
    Citations
    NaN
    KQI
    []