Functional Characterization of Terpene Synthases Accounting for the Volatilized-terpene Heterogeneity in Lathyrus odoratus Cultivar Flowers

2020 
Lathyrus odoratus (sweet pea) is an ornamental plant with exceptional floral scent, previously used as an experimental organism in the early development of Mendelian genetics. However, its terpene synthases (TPS), which act as metabolic gatekeepers in the biosynthesis of volatile terpenoids, remain to be characterized. Auto-Headspace Solid-phase Microextraction/GC-MS analysis of floral volatile terpene constituents from seven sweet pea cultivars identified α-bergamotene, linalool, (-)-α-cubebene, geraniol, β-caryophyllene and β-sesquiphellandrene as the dominant compounds. RNA sequencing was performed to profile the transcriptome of Lathyrus odoratus flowers. Bioinformatic analysis identified eight TPS genes (acronymed as LoTPS) that were successfully cloned, heterologously expressed and functionally analyzed. LoTPS4 and LoTPS7, belonging to the TPS-b clade, biochemically catalyzed the formation of monoterpenes and sesquiterpenes. LoTPS3 and LoTPS8, placed in the TPS-a clade, also generated monoterpenes and sesquiterpenes, while LoTPS12 belonging to the TPS-g clade showed linalool/nerolidol synthase activity. Notably, biochemical assays of the recombinant LoTPS proteins revealed their catalytic promiscuity, and the enzymatic products were basically consistent with major volatile compounds released from sweet pea flowers. The data from our study lay the foundation for the chemical ecology, molecular genetics and biotechnological improvement of sweet pea and other legumes (Fabaceae).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    80
    References
    3
    Citations
    NaN
    KQI
    []