SUPPRESSOR OF MAX2 1-LIKE 5 promotes secondary phloem formation during radial stem growth

2019 
As a prerequisite for constant growth, plants can produce vascular tissues at different sites in their postembryonic body. In particular, the formation of vascular tissues during longitudinal and radial expansion of growth axes differs fundamentally with respect to its anatomical configuration. This raises the question to which level regulatory mechanisms of vascular tissue formation are shared throughout plant development. Here, we show that, similar as primary phloem formation during longitudinal growth, the cambium-based formation of secondary phloem depends on the function of SMXL genes. Using promoter reporter lines, we observe that SMXL4 and SMXL5 activities are associated with different stages of secondary phloem formation in Arabidopsis stems and the specific loss of SMXL5 function results in the absence of secondary phloem. Interestingly, the additional disruption of SMXL4 activity increases cell proliferation rates in the cambium region without that secondary phloem is formed. Based on genome-wide transcriptional profiling and expression analyses of phloem-related markers we conclude that early steps of phloem formation are impaired in smxl4;smxl5 double mutants and that additional cambium-derived cells fail in establishing any phloem-related feature. Our results show that molecular mechanisms determining primary and secondary phloem share important features but differ slightly with SMXL5 playing a more dominant role in the formation of secondary phloem.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    52
    References
    2
    Citations
    NaN
    KQI
    []