The GAPS programme at TNG XXII. The GIARPS view of the extended helium atmosphere of HD189733 b accounting for stellar activity

2020 
Exoplanets orbiting very close to their host star are strongly irradiated. This can lead the upper atmospheric layers to expand and evaporate into space. The metastable helium (HeI) triplet at 1083.3nm has recently been shown to be a powerful diagnostic to probe extended and escaping exoplanetary atmosphere. We perform high-resolution transmission spectroscopy of the transiting hot Jupiter HD189733b with the GIARPS (GIANO-B + HARPS-N) observing mode of the Telescopio Nazionale Galileo, taking advantage of the simultaneous optical+near infrared spectral coverage to detect HeI in the planet's extended atmosphere and to gauge the impact of stellar magnetic activity on the planetary absorption signal. Observations were performed during five transit events of HD189733b. By comparison of the in- and out-of-transit GIANO-B observations we compute high-resolution transmission spectra, on which we perform equivalent width measurements and light-curves analyses to gauge the excess in-transit absorption in the HeI triplet. We detect an absorption signal during all five transits. The mean in-transit absorption depth amounts to 0.75+/-0.03%. We detect night-to-night variations in the HeI absorption signal likely due to the transit events occurring in presence of stellar surface inhomogeneities. We evaluate the impact of stellar-activity pseudo-signals on the true planetary absorption using a comparative analysis of the HeI and the H$\alpha$ lines. We interpret the time-series of the HeI absorption lines in the three nights not affected by stellar contamination -exhibiting a mean in-transit absorption depth of 0.77+/-0.04%- using a 3-d atmospheric code. Our simulations suggest that the helium layers only fill part of the Roche lobe. Observations can be explained with a thermosphere heated to $\sim$12000 K, expanding up to $\sim$1.2 planetary radii, and losing $\sim$1 g/s of metastable helium.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    88
    References
    25
    Citations
    NaN
    KQI
    []