Microstructural Investigation, Raman and Magnetic Studies on Chemically Synthesized Nanocrystalline Ni-Doped Gadolinium Oxide (Gd 1.90 Ni 0.10 O 3− δ )

2018 
Nanocrystalline Ni-doped gadolinium oxide (Gd1.90Ni0.10O3−δ, GNO) is synthesized by co-precipitation method. The as-prepared sample is annealed in vacuum at 700°C for 6 h. Analyses of the x-ray diffractogram by Rietveld refinement method, transmission electron microscopy and Raman spectroscopy of GNO recorded at room temperature confirmed the pure crystallographic phase and complete substitution of Ni-ions in Gd2O3 lattice. Magnetization (M) as a function of temperature (T) and magnetic field (H) is measured by a superconducting quantum interference device magnetometer, which suggests the presence of ferromagnetic/antiferromagnetic phases together with a paramagnetic phase. From the M–T curve it can be shown that the ferromagnetic phase dominates over para-/antiferromagnetic phases in the temperature range of 300–100 K, but from 100 K to 50 K, the antiferromagnetic phase dominates over ferro-/paramagnetic phases. Hysteresis loops recorded at different temperatures indicate the presence of weak ferro-/antiferromagnetism, which dominates in the low field region (∼ 4000 Oe), above which magnetization increases linearly. The sharp increase of magnetization in M–T curve observed in the temperature range of 50–5 K confirms the presence of dominating ferromagnetic plus paramagnetic phase over antiferromagnetic part. For the first time a combined formula generated from three-dimensional (3D) spin wave model and Johnston formula is proposed to analyze the coexistence of different magnetic phases in different temperature ranges. Interestingly, the combined formula successfully explains the co-existence of different magnetic phases along with their contribution at different temperatures. The onset of ferromagnetism in Gd1.90Ni0.10O3−δ is explained by oxygen vacancy mediated F-centre exchange (FCE) coupling mechanism.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    11
    Citations
    NaN
    KQI
    []