"Stealth" dendrimers with encapsulation of indocyanine green for photothermal and photodynamic therapy of cancer.

2021 
Abstract Poly(amido amine) dendrimers and indocyanine green have inevitable interaction with proteins and cells, which induces biological toxicity and reduces therapeutic efficacy in vivo. To overcome these shortcomings, a new drug delivery system G5MEK7C(n)-ICG with “stealth” layer was prepared. The surface of G5MEK7C(n)-ICG was modified with double-layer super hydrophilic zwitterionic materials. In the “stealth” double-layer structure, the outer layer was consisted of zwitterionic Glu-Lys-Glu-Lys-Glu-Lys-Cys (EK7) peptide, and the inner layer was composed of amino and carboxyl groups with a ratio of 1:1. DLS results showed that the average hydrodynamic size of G5MEK7C(n)-ICG was about 25-30 nm, and the zeta potential was proven to undergo a slight charge reversal with the increasing pH values of solutions. Furthermore, G5MEK7C(n)-ICG exhibited excellent biocompatibility to red blood cells and proteins resistance. However, photothermal and photodynamic experiments demonstrated that G5MEK7C(n)-ICG had a good photothermal conversion effect and generated singlet oxygen (1O2) under laser irradiation. The MTT and hemolysis results showed that the toxicity of G5 PAMAM was significantly reduced after modification double-layer structure. Cytotoxicity studies and flow cytometry showed G5MEK7C(70)-ICG under laser irradiation had a good effect on killing A549 cells. More importantly, the tumor inhibition rate of mice treated with G5MEK7C(70)-ICG (under laser irradiation) was 78.2% in vivo, which was higher than that of mice treated with free ICG. Compared with free ICG, G5MEK7C(70)-ICG caused less damage to the liver according to the enzyme activities of alanine aminotransferase (ALT) and aspartate aminotransferase (AST). Therefore, dendrimers modified with zwitterionic double-layer will be a promising candidate as a drug delivery system.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    12
    Citations
    NaN
    KQI
    []