Cytidine Deaminase APOBEC3A Regulates PD-L1 Expression in Cancer Cells in a JNK/c-JUN-dependent Manner.

2021 
Programmed death-ligand 1 (PD-L1) promotes tumor immune evasion by engaging the PD-1 receptor and inhibiting T-cell activity. While the regulation of PD-L1 expression is not fully understood, its expression is associated with tumor mutational burden and response to immune checkpoint therapy. Here, we report that Apolipoprotein B mRNA editing enzyme, catalytic polypeptide-like 3A (APOBEC3A) is an important regulator of PD-L1 expression. Using an APOBEC3A inducible expression system as well as siRNA against endogenous APOBEC3A, we found that APOBEC3A regulates PD-L1 mRNA and protein levels as well as PD-L1 cell surface expression in cancer. Mechanistically, APOBEC3A-induced PD-L1 expression was dependent on APOBEC3A catalytic activity as catalytically dead APOBEC3A mutant (E72A) failed to induce PD-L1 expression. Furthermore, APOBEC3A-induced PD-L1 expression was dependent on replication-associated DNA damage and JNK/c-JUN signaling but not interferon signaling. In addition, we confirmed the relevance of these finding in patient tumors as APOBEC3A expression and mutational signature correlated with PD-L1 expression in multiple patient cancer types. These data provide a novel link between APOBEC3A, its DNA mutagenic activity and PD-L1-mediated antitumoral immunity. This work nominates APOBEC3A as a mechanism of immune evasion and a potential biomarker for the therapeutic efficacy of immune checkpoint blockade. Implications: APOBEC3A catalytic activity induces replication-associated DNA damage to promote PD-L1 expression implying that APOBEC3A-driven mutagenesis represents both a mechanism of tumor immune evasion and a therapeutically targetable vulnerability in cancer cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []