Learning contact corrections for handle-based subspace dynamics

2021 
This paper introduces a novel subspace method for the simulation of dynamic deformations. The method augments existing linear handle-based subspace formulations with nonlinear learning-based corrections parameterized by the same subspace. Together, they produce a compact nonlinear model that combines the fast dynamics and overall contact-based interaction of subspace methods, with the highly detailed deformations of learning-based methods. We propose a formulation of the model with nonlinear corrections applied on the local undeformed setting, and decoupling internal and external contact-driven corrections. We define a simple mapping of these corrections to the global setting, an efficient implementation for dynamic simulation, and a training pipeline to generate examples that efficiently cover the interaction space. Altogether, the method achieves unprecedented combination of speed and contact-driven deformation detail.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []