Investigated diagnostic value of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling and diffusion-weighted imaging in the grading of glioma

2022 
Abstract Background To investigate the performance of synthetic relaxometry, three-dimensional pseudo-continuous arterial spin labelling (pCASL) and diffusion-weighted imaging (DWI) in differentiating high-grade gliomas (HGGs) from low-grade gliomas (LGGs) and to compare with the conventional MRI. Methods Seventy-two patients with gliomas (including 27 LGGs and 45 HGGs) were studied using synthetic magnetic resonance imaging (sy-MRI), pCASL, and DWI with a 3.0 T MR scanner. T1 relaxometry (T1), T2 relaxometry (T2), as well as proton density (PD) from sy-MRI, cerebral blood flow (CBF) from pCASL, apparent diffusion coefficient (ADC) from DWI and enhancement quality (EQ), proportion enhancing (PE) from conventional contrast enhanced image based Visually-Accessible-Rembrandt-Images (VASARI) scoring system, were all analyzed by two radiologists. The Student's t-test, Mann-Whitney U test or Fisher's exact test was used to compare the parameters between LGGs and HGGs. The diagnostic performance of each parameter and their combination for glioma grading were analyzed. Results Significant statistical differences in T1, PD, CBF, ADC, EQ and PE are observed between LGGs and HGGs (all P  Conclusions Relaxometry parameters derived from synthetic MRI contributed to the discrimination of low-grade gliomas from high-grade gliomas. Proposed contrast-free approach combining T1, PD, CBF and ADC showed a strong discriminative power, and outperformed conventional approaches.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    0
    Citations
    NaN
    KQI
    []