Spatio-temporal filtering in laser Doppler holography for retinal blood flow imaging

2020 
Laser Doppler holography (LDH) is a full-field interferometric imaging technique recently applied in ophthalmology to measure blood flow, a parameter of high clinical interest. From the temporal fluctuations of digital holograms acquired at ultrafast frame rates, LDH reveals retinal and choroidal blood flow with a few milliseconds of temporal resolution. However, LDH experiences difficulties to detect slower blood flow as it requires to work with low Doppler frequency shifts which are corrupted by eye motion. We here demonstrate the use of a spatio-temporal decomposition adapted from Doppler ultrasound that provides a basis appropriate to the discrimination of blood flow from eye motion. A singular value decomposition (SVD) can be used as a simple, robust, and efficient way to separate the Doppler fluctuations of blood flow from those of strong spatial coherence such as eye motion. We show that the SVD outperforms the conventional Fourier based filter to reveal slower blood flow, and dramatically improves the ability of LDH to reveal vessels of smaller size or with a pathologically reduced blood flow.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    28
    References
    7
    Citations
    NaN
    KQI
    []