Size-dependence of zirconia-based ceramics via deformation twinning

2020 
Abstract Contrary to the dislocation-driven ‘smaller-is-stronger’ size-effect in nanocrystals, the size-dependence of strength in deformation twinning, another carrier of plasticity, still lacks universal understanding. Deformation twinning enables pseudoplastic strain of >5% in a shape memory ceramic (ZrHfO4) x (YTaO4) 1−x . We use diffraction methods, microstructure analysis, and in-situ nanomechanical experiments to uncover contributing factors to the competition between twinning and slip in these submicron-sized ionic crystals, revealing power-law scaling of strength with size for both mechanisms. The significant twinning size-dependence was found to follow a superimposed power-law with exponent of -1, identical to that in metals. These findings unveil the universality of the superimposed power-law size-effect for twinning in single-crystals and provide new insights on deformability of ceramics and microstructure-driven nano-plasticity. One Sentence Summary: Twinning-induced large deformation in single-crystal ceramics with significant size-effect on strength.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    1
    Citations
    NaN
    KQI
    []