2D-porphrinic covalent organic framework-based aptasensor with enhanced photoelectrochemical response for the detection of C-reactive protein

2019 
Abstract In this study, a novel photoelectrochemical (PEC) aptasensor based on two-dimensional (2D) porphyrinic covalent organic frameworks (p-COFs) for the label-free detection of C-reactive protein (CRP) is presented. The obtained p-COFs possess high conductivity and an improved stability due to strong and rigid covalent linkages. The introduction of p-COFs hinder the recombination of electrons and holes, decreasing their band gap (E g ), thereby which improved the photocurrent conversion efficiency. Compared with pure porphyrin, p-COFs exhibited enhanced photocurrent intensity. An amplified photocurrent conversion efficiency and enhanced photocurrent results from H 2 O 2 , which act as active molecules and electron donors. As an unprecedented application of COFs in PEC bioanalysis, the detection of CRP with a PEC aptasensor is presented. The assembly of a CRP aptamer on the surface of Ag nanoparticles hinders the electron transfer, resulting in the decrease of the photocurrent response. This PEC aptasensor exhibits good analytical performances such as a rapid response, high stability, wide linear range and excellent selectivity, making COFs promising candidates for PEC bioanalysis.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    45
    Citations
    NaN
    KQI
    []