High-Throughput Experimental Study of Wurtzite Mn1–xZnxO Alloys for Water Splitting Applications

2019 
We used high-throughput experimental screening methods to unveil the physical and chemical properties of Mn1–xZnxO wurtzite alloys and identify their appropriate composition for effective water splitting application. The Mn1–xZnxO thin films were synthesized using combinatorial pulsed laser deposition, permitting for characterization of a wide range of compositions with x varying from 0 to 1. The solubility limit of ZnO in MnO was determined using the disappearing phase method from X-ray diffraction and X-ray fluorescence data and found to increase with decreasing substrate temperature due to kinetic limitations of the thin-film growth at relatively low temperature. Optical measurements indicate the strong reduction of the optical band gap down to 2.1 eV at x = 0.5 associated with the rock salt-to-wurtzite structural transition in Mn1–xZnxO alloys. Transmission electron microscopy results show evidence of a homogeneous wurtzite alloy system for a broad range of Mn1–xZnxO compositions above x = 0.4. The wu...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    4
    Citations
    NaN
    KQI
    []