Cryogenic focal plane flatness measurement with optical zone slope tracking

2011 
We describe a non-contact optical measurement method used to determine the surface flatness of a cryogenic sensor array developed for the JDEM mission. Large focal planes envisioned for future visible to near infra-red astronomical large area point-source surveys such as JDEM, WFIRST, or EUCLID must operate at cryogenic temperatures while maintaining focal plane flatness within a few 10's of μm over half-meter scales. These constraints are imposed by sensitivity conditions that demand low noise observations from the sensors and the large-field, fast optical telescopes necessary to obtain the science yield. Verifying cryogenic focal plane flatness is challenging because μm level excursions need to be measured within and across many multi-cm sized sensors using no physical contact and while situated within a high-vacuum chamber. We have used an optical metrology Shack-Hartmann scheme to measure the 36x18 cm focal plane developed for the JDEM mission at the Lawrence Berkeley National Laboratory. The focal plane holds a 4x8 array of CCDs and HgCdTe detectors. The flatness measurement scheme uses a telescope-fed micro-lens array that samples the focal plane to determine slope changes of individual sensor zones.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    6
    References
    2
    Citations
    NaN
    KQI
    []