Theoretical and experimental studies on the thermal decomposition of 1-butyl-3-methylimidazolium dibutyl phosphate

2020 
Abstract Ionic liquid, an organic molten salt, has efficient flame-retardant performance. Few researchers have attempted to study its flame-retardant mechanism. Moreover, thermal stability and pyrolysis products have a great impact on the flame retardancy. Therefore, this paper focused on the phosphate ionic liquid of 1-butyl-3-methylimidazolium dibutyl phosphate ([Bmim][DBP]) and analyzed its thermal decomposition products and characteristics. The major bond energies of [Bmim][DBP] were calculated using B3LYP/6–311++G(d,p)//M06–2X/6–311++G(d,p) level. The experimental results show that the pyrolysis products were as followed: alkane or alkene with a carbon chain length of 1–4; imidazole and its derivatives; esters. Furthermore, Gas chromatography-mass spectrometer and Fourier transform infrared spectrometer were utilized to measure the gaseous products and solid phase products of [Bmim][DBP], which were obtained during thermogravimetric analysis. The results of theoretical and experimental analysis were highly consistent. Finally, the possible flame-retardant mechanism of [Bmim][DBP] was proposed.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    34
    References
    2
    Citations
    NaN
    KQI
    []