[Effects of soil water stress and atmospheric CO2 concentration on photosynthetic and post-photosynthetic fractionation].

2020 
Analysis of plant photosynthesis and post-photosynthetic fractionation can improve our understanding of plant physiology and water management. By measuring δ13C in the atmosphere, and δ13C of soluble compounds in leaves and branch phloem of Platycladus orientalis, we examined discrimination pattern, including atmosphere-leaf discrimination during photosynthesis (ΔCa-leaf) and leaf-twig discrimination during post-photosynthesis (ΔCleaf-phlo), in response to changes of soil water content (SWC) and atmospheric CO2 concentration (Ca). The results showed that ΔCa-leaf reached a maximum of 13.06‰ at 95%-100% field water-holding capacity (FC) and Ca 400 μmol·mol-1, and a minimum of 8.63‰ at 35%-45% FC and Ca 800 μmol·mol-1. Both stomatal conductance and mesophyll cell conductance showed a significant linear positive correlation with ΔCa-leaf, with a correlation coefficient of 0.43 and 0.44, respectively. ΔCleaf-phlo was not affected by SWC and Ca. Our results provide mechanism of carbon isotopes fractionation and a theoretical basis for plant survival strategies in response to future climate change.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []