Reconnaissance of cumulative risk of pesticides and pharmaceuticals in Great Smoky Mountains National Park streams.

2021 
The United States (US) National Park Service (NPS) manages protected public lands to preserve biodiversity. Exposure to and effects of bioactive organic contaminants in NPS streams are challenges for resource managers. Recent assessment of pesticides and pharmaceuticals in protected-streams within the urbanized NPS Southeast Region (SER) indicated the importance of fluvial inflows from external sources as drivers of aquatic contaminant-mixture exposures. Great Smoky Mountains National Park (GRSM), lies within SER, has the highest biodiversity and annual visitation of NPS parks, but, in contrast to the previously studied systems, straddles a high-elevation hydrologic divide; this setting limits fluvial-inflows of contaminants but potentially increases visitation-driven contaminant deliveries. We leveraged the unique characteristics of GRSM to test further the importance of fluvial contaminant inflows as drivers of protected-stream exposures and to inform the relative importance of potential additional contaminant transport mechanisms, by comparing the estimated risks of 328 pesticides and pharmaceuticals in water at 16 GRSM stream locations to those estimated previously in SER streams. Extensive mixtures (31 compounds) were only observed in an atypical reach on the boundary of GRSM downstream of a wastewater discharge, while limited mixtures (2-5 compounds) were observed in one stream with elevated visitation pressure (recreational "tube floating"). The insecticide, imidacloprid, used to eradicate hemlock woolly adelgid, was detected in 8 (50%) streams. Infrequent exceedances of a cumulative ToxCast-based, exposure-activity ratio (ΣEAR) 0.001 screening-level of concern suggested limited risk to non-target, aquatic vertebrates, whereas exceedances of a cumulative benchmark-based, invertebrate toxicity quotient (ΣTQ) 0.1 screening level at 8 locations indicated generally high risk to invertebrates. The results are consistent with the importance of fluvial transport from extra-park sources as a driver of bioactive-contaminant mixture exposures in protected streams and illustrate the potential additional risks from visitation-driven and tactical-use-pesticides.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    0
    Citations
    NaN
    KQI
    []