Anomalous Hall effect and negative longitudinal magnetoresistance in half-Heusler topological semimetal candidates TbPtBi and HoPtBi

2020 
Half-Heusler compounds have attracted significant attention because of their topologically non-trivial electronic structure, which leads to unusual electron transport properties. We thoroughly investigated the magnetotransport properties of high-quality single crystals of two half-Heusler phases, TbPtBi and HoPtBi, in pursuit of the characteristic features of topologically non-trivial electronic states. Both studied compounds are characterized by the giant values of transverse magnetoresistance with no sign of saturation in magnetic field up to 14 T. HoPtBi demonstrates the Shubnikov-de Haas effect with two principal frequencies, indicating a complex Fermi surface; the extracted values of carrier effective masses are rather small, $0.18\,m_e$ and $0.27\,m_e$. The investigated compounds exhibit negative longitudinal magnetoresistance and anomalous Hall effect, which likely arise from a nonzero Berry curvature. Both compounds show strongly anisotropic magnetoresistance, that in HoPtBi exhibits a butterfly-like behavior.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    65
    References
    0
    Citations
    NaN
    KQI
    []