Synthesis of a silymarin-gold nanoparticle conjugate and analysis of its liver-protecting activity.

2021 
Background The liver disease problem prompts investigators to search for new methods of liver treatment. Introduction Silymarin (Sil) protects the liver by reducing the concentration of free radicals and the extent of damage to the cell membranes. A particularly interesting method to increase the bioavailability of Sil is to use synthesized gold nanoparticles (AuNPs) as reagents. The study considered whether it was possible to use the silymarin-AuNP conjugate as a potential liver-protecting drug. Method AuNPs were conjugated to Sil and examine the liver-protecting activity of the conjugate. Experimental hepatitis and hepatocyte cytolysis after carbon tetrachloride actionwere used as a model system, and the experiments were conducted on laboratory animals. Result For the first time, silymarin was conjugated to colloidal gold nanoparticles (AuNPs). Electron microscopy showed that the resultant preparations were monodisperse and that the mean conjugate diameter was 18-30 nm ± 0.5 nm (mean diameter of the native nanoparticles, 15 ± 0.5 nm). In experimental hepatitis in mice, conjugate administration interfered with glutathione depletion in hepatocytes in response to carbon tetrachloride was conducive to an increase in energy metabolism, and stimulated the monocyte-macrophage function of the liver. The results were confirmed by the high respiratory activity of the hepatocytes in cell culture. Conclusion We conclude that the silymarin-AuNP conjugate holds promise as a liver-protecting agent in acute liver disease caused by carbon tetrachloride poisoning.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    1
    Citations
    NaN
    KQI
    []