Imprint of Southern Ocean eddies on chlorophyll

2018 
Although mesoscale ocean eddies are ubiquitous in the Southern Ocean, their spatial and seasonal association with phytoplankton has to date not been quantified in detail. To this end, we identify over 100,000 eddies in the Southern Ocean and determine the associated phytoplankton biomass anomalies using satellite-based chlorophyll-a (Chl) as a proxy. The mean eddy associated Chl anomalies (?Chl) exceed p10 % over wide regions. The structure of these anomalies is largely zonal, with cyclonic, thermocline lifting, eddies having positive anomalies in the subtropical waters north of the Antarctic Circumpolar Current (ACC) and negative anomalies along the ACC. The pattern is similar, but reversed for anticyclonic, thermocline deepening eddies. The seasonality of ?Chl is weak in subtropical waters, but pronounced along the ACC, featuring a seasonal sign switch. The spatial structure and seasonality of ?Chl can be explained largely by lateral advection, especially eddy- stirring . A prominent exception is the ACC region in winter, where ?Chl is consistent with a modulation of phytoplankton light exposure caused by an eddy-induced modification of the mixed layer depth. The clear impact of eddies on phytoplankton may implicate a downstream effect on Southern Ocean biogeochemical properties, such as mode water nutrient contents.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    2
    Citations
    NaN
    KQI
    []