Predicting stochastic characteristics of generalized eigenvalues via a novel sensitivity-based probability density evolution method

2020 
Abstract This paper proposes a novel numerical method for predicting the probability density function of generalized eigenvalues in the mechanical vibration system with consideration of uncertainties in structural parameters. The eigenproblem of structural vibration is presented by first and the sensitivity of generalized eigenvalues with respect to structural parameters can be derived. The probability density evolution method is then developed to capture the probability density function of generalized eigenvalues considering uncertain material properties. Within the proposed method, the probability density evolution equation for the generalized eigenvalue problem is established accounting for the sensitivity of generalized eigenvalues with respect to structural parameters. A new variable which connects generalized eigenvalues to structural parameters is then introduced to simplify the original probability density evolution equation. Next, the simplified probability density evolution equation is solved by using the finite difference method with total variation diminishing schemes. Finally, the probability density function as well as the second-order statistical quantities of generalized eigenvalues can be predicted. Numerical examples demonstrate that the proposed method yields results consistent with Monte-Carlo simulation method within significantly less computation time and the coefficients of variation of uncertain parameters as well as the total number of them have remarkable effects on stochastic characteristics of generalized eigenvalues.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    2
    Citations
    NaN
    KQI
    []