Comparative proteomic analysis of tomato (Solanum lycopersicum L.) shoots reveals crosstalk between strigolactone and auxin

2021 
Abstract As one of the main vegetable crops cultivated in the world, the tomato has advantages of high yield and economic benefits, and plays an important role in promoting farmers' income and social and economic growth. However, lateral branches during the growth process of tomato consume considerable nutrients and reduce the yield of tomato. Phytohormones such as strigolactone and auxin can inhibit the formation of lateral branches. However, the mechanism of their interaction is not particularly clear. To better understand the effects of exogenous strigolactone and auxin on tomato, proteome analyses of tomato shoots treated with exogenous GR24 and indole acetic acid were performed using an integrated approach involving tandem mass tag (TMT) labeling and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). We identified 6685 proteins, of which 5822 contained quantitative information. Many differentially expressed proteins (DEPs) were found in different comparisons, including 415, 148, and 130 DEPs in GR24 vs mock, IAA vs mock, and GR24 + IAA vs mock comparisons, respectively. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis revealed that ‘photosynthesis - antenna proteins’ were significantly enriched in three treatments. Our data can help reveal the interaction between strigolactone and auxin in tomato seedlings.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []