Local adaptive joint sparse representation for hyperspectral image classification

2019 
Abstract In this paper, a local adaptive joint sparse representation (LAJSR) model is proposed for the classification of hyperspectral remote sensing images. It improves the original joint sparse representation (JSR) method in both the signal and dictionary construction phase and sparse representation phase. Given a testing pixel, a similar signal set is constructed by picking a few of the most similar pixels from its spatial neighborhood. The original training dictionary consists of training samples from different classes and is extended by adding spatial neighbors of each training sample. A local adaptive dictionary is built by selecting the most representative atoms from the extended dictionary that are correlated to the similar signal set. In the LAJSR framework, the selected similar signals are simultaneously represented by the local adaptive dictionary, and the obtained sparse representation coefficients are further weighted by a sparsity concentration index vector which aims to concentrate and highlight the coefficients on the expected class. Experimental results on two benchmark hyperspectral data sets have demonstrated that the proposed LAJSR method is much more effective than existing JSR and SVM methods, especially in the case of small sample sizes.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    36
    References
    18
    Citations
    NaN
    KQI
    []