Discovery of a Paired Gaussian, Long-Tailed Distribution of Potential Energies in Nano Glasses

2021 
It is generally believed that the intrinsic properties of glasses are intimately related to potential energy landscapes (PELs). However, little is known about the PELs of glasses below the glass transition temperature (T_g). Taking advantage of lower potential energy barriers in nano systems, we have systematically investigated the dynamics behavior of two nano glasses, Al43 and Al46. Structure transformation is identified in our pure molecular-dynamics simulation far below T_g, which manifests the existence of metabasins in PELs. Surprisingly, we find that the distribution of potential energies shows a paired-Gaussian and long-tailed distribution at temperatures below and approaching T_g, correspondingly the distribution of the {\alpha}-relaxation time exhibits an exponential decay. In contrast to the Gaussian distribution of energy in typical liquids and solids, the paired-Gaussian and long-tailed distribution of potential energies, as well as the exponential distribution of the {\alpha}-relaxation time, may be considered as the intrinsic feature of a glass or supercooled liquid. The current results are important not only for checking the reliability of various PEL-based models, but also for exploring the microscopic nature of glasses.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    83
    References
    0
    Citations
    NaN
    KQI
    []